|
|||
Total Internal Reflection Fluorescence MicroscopySelected Literature ReferencesA number of comprehensive review articles and original research reports on total internal reflection fluorescence microscopy (TIRFM) have been published by leading scientists in the field. This section contains periodical information about the review articles, as well as providing a listing of selected original research reports describing the classical techniques of TIRFM with an emphasis on investigations in the areas of biochemistry, membrane dynamics, and cell biology. Evanescent-wave microscopy: A new tool to gain insight into the control of transmitter release., Oheim, M., Loerke, D., Chow, R., and Stühmer, W., Philosophical Transactions of the Royal Society of London, Series B: 354, 307-318 (1999). Surface fluorescence microscopy with evanescent illumination., Axelrod, D., Light Microscopy in Biology, Lacey, A. (ed), Oxford University Press, New York, 399-423 (1999). Total reflection., Born, M. and Wolf, E., Principles of Optics, 7th Edition, Cambridge University Press, Cambridge, United Kingdom, 49-53 (1999). Total internal reflection and the evanescent wave., Hecht, E., Optics, Addison Wesley Longman, Incorporated, New York, 121-127 (1998). Total internal reflectance fluorescence microscopy., Tamm, L., Optical Microscopy: Emerging Methods and Applications, Herman, B. and Lemasters, J. (eds), Academic Press, New York, 295-337 (1993). Total internal reflection fluorescence., Axelrod, D., Hellen, E., and Fulbright, R., Topics in Fluorescence Spectroscopy, Volume 3: Biochemical Applications, Lakowicz, J. (ed), Plenum Press, New York, 289-343 (1992). Evanescent-wave microscopy: a simple optical configuration., Murray, J. and Eshel, D., Journal of Microscopy: 167, 49-62 (1992). Photon tunneling microscopy., Guerra, J., Applied Optics: 29, 3741-3752 (1990). Total internal reflection fluorescence microscopy., Axelrod, D., Methods in Cell Biology, Vol. 30, Taylor, D. and Wang, Y. (eds), Academic Press, New York, 245-270 (1989). Emission of fluorescence at an interface., Axelrod, D. and Hellen, E., Methods in Cell Biology, Vol. 30, Taylor, D. and Wang, Y. (eds), Academic Press, New York, 399-416 (1989). Total internal reflection intrinsic fluorescence (TIRIF) spectroscopy applied to protein adsorption., Hlady, V., Wagenen, R., and Andrade, J., Surface and Interfacial Properties of Biomedical Polymers, Vol. 2: Protein Adsorption, Andrade, J. (ed), Plenum Press, New York, 81-119 (1985). Total internal reflection fluorescence., Axelrod, D., Burghardt, T., and Thompson, N., Annual Review of Biophysics and Bioengineering: 13, 247-268 (1984). Total internal reflection fluorescent microscopy., Axelrod, D., Thompson, N., and Burghardt, T., Journal of Microscopy: 129, Part 1, 19-28 (1983). Plane surfaces and prisms., Jenkins, F. and White, H., Fundamentals of Optics, McGraw-Hill, New York 24-28 (1976). Monomolecular layers and light., Drexhage, K., Scientific American: 222, 108-119 (1970). Imaging constitutive exocytosis with total internal reflection fluorescence microscopy., Schmoranzer, J., Goulian, M., Axelrod, D., and Simon, S., Journal of Cell Biology: 149, 23-31 (2000). Transport, capture and exocytosis of single synaptic vesicles at active zones., Zenisek, D., Steyer, J., and Almers, W., Nature: 406, 849-854 (2000). Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles., Oheim, M., Loerke, D., Stuhmer, W., and Chow, R., Eur. Biophys. J.:28, 91-101 (1999). Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin., Ishijima, A., Kojima, H., Funatsu, T., Tokunaga, M., Higuchi, H., Tanaka, H., and Yanagida, T., Cell: 92, 161-171 (1998). The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM)., Oheim, M., Loerke, D., Stuhmer, W., and Chow, R., Eur. Biophys. J.: 27, 83-98 (1998). A simple optical configuration for depth-resolved imaging using variable-angle evanescent-wave microscopy., Oheim, M., Loerke, D., Preitz, B., and Stuhmer, W., Proc. Eur. Opt. Soc.: 3568 , 1-10 (1998). Quantitative variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) visualises dynamics of chromaffin granules with nanometer axial resolution., Oheim, M., Loerke, D., Chow, R., and Stuhmer, W., Biophys. Journal: 74, a96 (1998). Transport, docking and exocytosis of single secretory granules in live chromaffin cells., Steyer, J., Horstmann, H., and Almers, W., Nature: 388, 474-478 (1997). Refractive-index measurement based on the effects of total internal-reflection and the uses of heterodyne interferometry., Chiu, M., Lee, J., and Su, D., Appl. Opt.: 36, 2936-2939 (1997). Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy., Tokunaga, M., Kitamura, K., Saito, K., Iwane, A., and Yanagida, T., Biochemical and Biophysical Research Communications: 235, 47-53 (1997). Imaging exocytosis and endocytosis., Betz, W., and Mao, F., and Smith, C., Curr. Opin. Neurobiol.: 6, 365-371 (1996). Measurement method of the refractive-index of biotissue by total internal-reflection., Li, H. and Xie, S., Appl. Opt.: 35, 1793-1798 (1996). Cytoplasmic viscosity near the cell plasma membrane-translational diffusion of a small fluorescent solute measured by total internal reflection-fluorescence photobleaching recovery., Swaminathan, R., Bicknese, S., Periasamy, N., and Verkman, A., Biophys. J.: 71, 1140-1151 (1996). Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs., Farinas, J., Simanek, V., and Verkman, A., Biophs. J.: 68, 1613-1620 (1995). Quantitative analysis of variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) of cell-substrate contacts., Burmeister, J., Truskey, G., and Reichert, W., Journal of Microscopy: 173, 39-51 (1994). Total internal reflection fluorescence microscopy (TIRFM) II. Topographical mapping of relative cell/substratum separation distances., Trunskey, G., Burmeister, J., Grapa, E., and Reichert, W., Journal of Cell Science: 103, 491-499 (1992). Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells., Chow, R., Ruden, L., and Neher, E., Nature: 356, 60-63 (1992). Evidence from total internal reflection fluorescence microscopy for calcium-independent binding of prothrombin to negatively charged planar phospholipid membranes., Tendian, S., Lentz, B., and Thompson, N., Biochemistry: 30, 10991-10999 (1991). Binding of IgG to MoFcyRII purified and reconstituted into supported planar membranes as measured by total internal reflectance fluorescence microscopy., Poglitisch, C., Sumner, M., and Thompson, N., Biochemistry: 30, 6662-6671 (1991). Binding of proteins to specific target sites in membranes measured by total internal reflection of fluorescence microscopy., Kalb, E., Engel, J., and Tamm, L., Biochemistry: 29, 1607-1613 (1990). Total internal reflection fluorescence (TIRF) microscopy. 1. Modeling cell contact region fluorescence., Reichert, W. and Truskey, G., Journal of Cell Science: 96, 219-230 (1990). Absolute quantities and equilibrium kinetics of macromolecular adsorption measured by fluorescence photobleaching in total internal reflection., Zimmerman, R., Schmidt, C., and Gaub, H., J. Colloid Interfac. Sci.: 139, 268-280 (1990). Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface., Tilton, R., Robertson, C., and Gast, A., J. Colloid Interface Sci.: 137, 192-203 (1990a). Interaction of antibodies with (Fc) receptors in substrate-supported planar membranes measured b total internal reflection fluorescence microscopy., Poglitsch, C. and Thompson, N., Biochemistry: 29, 248-254 (1990). Binding of a monoclonal antibody and its (Fab) fragment to supported phospholipid monolayers measured by total internal reflectance fluorescence microscopy., Pisarchick, M. and Thompson, N., Biophysical Journal: 58, 6662-6671 (1990). Evanescent field excitation of fluorescence by epi-illumination microscopy., Stout, A. and Axelrod, D., Applied Optics: 28, 5237-5242 (1989). Mapping cell-glass contacts of dictyostelium amoebae by total internal reflection aqueous fluorescence overcomes a basic ambiguity of interference reflection microscopy., Todd, I., Melior, J., and Gingell, D., Journal of Cell Science: 89, 107-114 (1988). Fluorescence techniques for supported planar model membranes., Thompson, N., Palmer III, A., Wright, L., and Scarborough, P., Comments Mol. Cell Biophys.: 5, 109-131 (1988). Fluorescence emission at dielectric and metal-film interfaces., Hellen, E. and Axelrod, D., Journal of the Optical Society of America, B:4, 337-350 (1987). General electromagnetic theory of total internal reflection fluorescence: the quantitative basis for mapping cell-substratum topography., Gingell, D., Heavens, O., and Mellor, J., Journal of Cell Science: 87, 677-693 (1987). Fluorescence of absorbed protein layers: Quantitation of total internal reflection fluorescence., Hlady, V., Reinecke, D., and Andrade, J., J. Colloid Interface Science: 3, 555-569 (1986). Human haptoglobin adsorption by a total internal reflectance fluorescence method., Lowe, R., Hlady, V., Andrade, J., and van Wagenen, R., Biomaterials: 7, 41-44 (1986). Structural organization of interphase 3T3 fibroblasts studied by total internal reflection fluorescence microscopy., Lanni, F., Waggoner, A., and Taylor, D., Journal of Cell Biology: 100, 1091-1102 (1985). Topography of cell-glass apposition revealed by total internal reflection fluorescence of volume markers., Gingell, D., Todd, I., and Bailey, J., Journal of Cell Biology: 100, 1334-1338 (1985). Laminin binds specifically to sulfated glycolipids., Roberts, D., Rao, C., Magnani, J., Spitalnik, S., Liotta, L., and Ginsberg, V., Proc. Natl. Acad. Sci. U.S.A.: 82, 1306-1310 (1985). Topography of cell glass apposition revealed by total internal reflection fluorescence of volume markers., Gingell, D., Todd, I., and Bailey, J., Journal of Cell Biology: 100, 1334-1338 (1985). Effect of planar dielectric interfaces on fluorescence emission and detection: evanescent excitation with high aperture observation., Burghardt, T. and Thompson, N., Biophysical Journal: 46, 729-739 (1984). Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism., Burghardt, T. and Thompson, N., Optical Engineering: 23, 62-67 (1984). Order in supported phospholipid monolayers detected by the dichrosim of fluorescence excited with polarized evanescent illumination, Thompson, N., McConnell, H., and Burghardt, T., Biophysical Journal: 46, 739-747 (1984). Total internal reflection fluorescence study of energy transfer in surface-absorbed and dissolved bovine serum albumin., Burghardt, T. and Axelrod, D., Biochemistry: 22, 979-985 (1983). Immunoglobulin surface-binding kinetics studied by total internal reflection with fluorescence correlations spectroscopy., Thompson, N. and Axelrod, D., Biophysical Journal: 43, 103-114 (1983). Cell-substrate contacts illuminated by total internal reflection fluorescence., Axelrod, D., Journal of Cell Biology: 89, 141-145 (1981). Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy., Thompson, N., Burghardt, T., and Axelrod, D., Biophysical Journal: 33, 433-454 (1981). Total internal reflection/fluorescence photobleaching recovery study of serum-albumin absorption dynamics., Burghardt, T. and Axelrod, D., Biophys. Journal: 33, 455-467 (1981). Interference reflection microscopy: A quantitative theory for image interpretation and its application to cell-substratum separation measurement., Gingell, D. and Todd, I., Biophys. Journal: 26, 507-526 (1979). Interaction of hemoglobin with red blood cell membranes as shown by fluorescent chromophore., Shaklai, N., Yguerabide, J., and Ranney, H., Biochemistry: 16, 5585-5592 (1977). A total internal-reflectance technique for the examination of protein adsorption., Watkins, I. and Robertson, C., J. Biomed. Mater. Res.: 11, 915-938 (1977). A new immunoassay based on fluorescence excitation by internal reflectance spectroscopy., Kronick, M. and Little, W., J. Immunol. Meth.: 8, 235-240 (1975). Multiple internal reflection fluorescence spectrometry., Harrick, N. and Loeb, F., Anal. Chem.: 45, 687-691 (1973). Effective thickness of bulk materials and of thin films for internal reflection spectroscopy., Harrick, N. and du Pre, F., Applied Optics: 5, 1739-1743 (1966). Electric field strengths at totally reflecting interfaces., Harrick, N., J. Opt. Soc, Am.: 55, 851-857 (1965). The mechanism of cell adhesion to glass, a study by interference reflection microscopy., Curtis, A., Journal of Cell Biology: 20, 199 (1964). Intermolecular energy migration and fluorescence., Forster, T., Ann. Phys.: 2, 55-75 (1948). Surface density determination in membranes by fluorescence energy transfer., Fung, B. and Stryer, L., Biochemistry: 17, (1948). BACK TO TIR FLUORESCENCE MICROSCOPY Questions or comments? Send us an email.© 1998-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
|
|||