|
|||
Multiphoton Fluorescence MicroscopyOptical microscopy is virtually the only means by which living cells and tissues can be studied with high spatial resolution. This has recently led to a return of light microscopy to the frontlines of biological research, with confocal and multiphoton fluorescence applications leading the way. Listed below are links to resources on the web for multiphoton fluorescence microscopy including microscope and laser manufacturers, university laboratories, industrial imaging laboratories, technical white papers and tutorials. Advanced Light Microscopy Group - Attached to the European Molecular Biology Laboratory (EMBL), the Advanced Light Microscopy Group is headed by Ernst Stelzer. Among the numerous techniques available at the facility are scanning confocal microscopy, single-lens theta microscopy, and photon-force microscopy, a derivative of multiphoton microscopy. Center for Ultrastructural Research - The Center for Ultrastructural Research located on the campus of the University of Georgia in Athens, Georgia, is one of the premier electron microscope laboratories in the southeastern United States. The Center is dedicated to providing the University of Georgia system and the scientific community-at-large with expertise in the use and application of light and electron optical methods to a wide variety of problems. Cornell University Chronicle - Multiphoton Microscopy - This article describes the development of multiphoton microscopy by Cornell professor Watt W. Webb and his colleagues. Although the article is brief, it does contain some historical information about the technique. Debye Institute at Utrecht University - Sponsored by the Molecular Biophysics research group at Utrecht, this website features information about the faculty, who are active in the fields of fluorescence microscopy, spectroscopy and computer simulations and their applications to biological systems. Also included are several links to other websites that are focused on multiphoton fluorescence microscopy. Department of NanoBiophotonics - Housed in the Max-Planck-Institute for Biophysical Chemistry in Göttingen, Germany, the optical microscopy facility website offers a list of current publications and a digital image gallery. This department is headed by Dr. Stefan W. Hell, a noted expert in fluorescence microscopy. Also included is a list of faculty and staff members and their contact information. Laboratory for Optical and Computational Instrumentation (LOCI) - Located at the University of Wisconsin, LOCI is charged with developing advanced optical and computational techniques for imaging and experimentally manipulating living specimens. Among the instruments housed at LOCI are several multiphoton microscope systems. Laser Scanning Microscopy - Dr. Bruce Jenks, a researcher at the University of Nijmegen in the Netherlands, has constructed a single-page tutorial on confocal and multiphoton laser microscopy. This site is well illustrated and contains basic information about the techniques. Leica Microsystems - Leica research and development, in cooperation with leading imaging scientists from around the world, has created a new concept in two-photon microscopy. The Leica TCS MP (multiphoton) microscopy system exemplifies the commitment of Leica Microsystems to innovation. Also offered by Leica are a wide spectrum of confocal microscope systems and a complete line-up of microscopes for industry, education, and biological research. Microcosm - A leader in bioimaging, microcosm offers a wide spectrum of products and services targeted at both the industrial and university communities. Included on the website are a series of tutorials on various phases of fluorescence microscopy, a listing of publications, and a frequently asked questions section on optical microscopy. Multifocal Multiphoton Microscopy - Sponsored by the Applied Laserphysics department at the University of Bielefeld in Germany, this website has a mini-tutorial on the basic aspects of multiphoton microscopy. Also included are links to other microscopy websites, a listing of publications, and a directory of faculty and staff at the facility. National Facility for Multiphoton Excitation Fluorescence Spectroscopy on Biomolecules - Sponsored by the University of Genova, this facility offers several tutorials and publications in portable document format. Also available on the website is a listing of faculty and staff, research projects, and a catalog of the resources offered by the facility. TauTec LLC - TauTec offers ultrahigh repetition rate, picosecond gated, gain modulated (1 GHz) ICCD cameras and low-light sensitive, ultrafast readout CCD cameras. In addition, the company distributes multifocal multiphoton microscope workstations for real-time fluorescence microscopy with time-lapse, ratio imaging, 2D and 3D kentics, FLIM, FRET, FRAP, polarization and spectral imaging functionalities, fluorescence lifetime imaging microscopes, and time-gated Raman imaging and spectroscopy systems. TILL Photonics - Based in Germany, TILL offers equipment, software and services for all areas of fluorescence microscopy. Their modular approach allows the assembly of fully integrated systems which can grow with increasing research interests and requirements. The company supplies a limited number of lasers and accessories for two-photon microscopy. University of Delaware Multiphoton Microscopy - Sponsored by the Department of Biology, this website features a short tutorial on multiphoton fluorescence microscopy. Also included are a number of specific applications by department faculty members. Vanderbilt Two-Photon Laboratory - Directed by David W. Piston, this laboratory studies a wide spectrum of biological phenomena utilizing multiphoton fluorescence microscopy. Included in the website is a short tutorial and a listing of pertinent publications. Watt W. Webb Publications - A quick reference guide to the publications of Cornell's Dr. Watt W. Webb, principal investigator of the group at Cornell University that introduced the multiphoton fluorescence microscopy technique. Yale University Center for Cell Imaging - The confocal microscopy facility was jointly established in 1989 by the Department of Cell Biology and the Yale Liver Center. It now is supported directly by the School of Medicine to assure access for all investigators. The center offers laser scanning confocal and multiphoton excitation microscope systems that are available for associated faculty members. Clark/MXR - A leader in laser technology, Clark/MXR offers several Ti:Sapphire mode-locked pulsed laser systems designed for multiphoton fluorescence microscopy. These systems are designed to afford turnkey operation to ease the burden of continuous realignment and tuning that requires the constant attention of a laser professional. Coherent - This leading-edge manufacturer offers a number of turnkey laser systems designed specifically for multiphoton microscopy. Along with descriptions and specification sheets for their product line-up, Coherent engineers also distribute a tutorial on multiphoton microscopy in portable document format. Opotek - Opotek was founded in 1993 by scientists and engineers who recognized the potential of Optical Parametric Oscillator (OPO) technology for providing solutions to numerous applications. Being an all solid state tunable source, OPO's offer reliability and ease of operation which can not be matched by any other laser system. Manufacturing tunable lasers for a number of applications, Opotek offers Nd:YAG systems that may be useful for multiphoton microscopy investigations. Spectra-Physics - Founded in 1961, Spectra-Physics is a leader in the design, development, manufacture, and distribution of lasers, laser systems and telecom products for a broad range of markets. The company offers a diverse line of laser products backed by a sales, service and support organization located in more than 35 countries. Several laser systems are available for applications such as multiphoton fluorescence microscopy, including the Mai Tai, Opal, and Tsunami Ti:Sapphire tunable mode-locked pulsed systems. Time-Bandwidth - Founded in early 1995 to commercialize new developments in ultrafast laser systems, Time-Bandwidth Products specializes in diode-pumped solid-state lasers and passively mode-locked using SESAMs (semiconductor saturable absorber mirrors) to generate ultrashort laser light pulses with pulsewidths in the range of femtoseconds to picoseconds. BACK TO MULTIPHOTON FLUORESCENCE Questions or comments? Send us an email.© 1998-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
|
|||