Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

NSOM Interactive Tutorials

Aperture Scanning of a Metal Line Grating

In 1972, E. A. Ash and G. Nicholls, from the University College in London, demonstrated the near-field resolution of a subwavelength aperture scanning microscope operating in the microwave region of the electromagnetic spectrum. Utilizing microwaves, with a wavelength of 3 centimeters, passing through a probe-forming aperture of 1.5 millimeters, the probe was scanned over a metal grating having periodic line features. Both the 0.5-millimeter lines and 0.5-millimeter gaps in the grating were easily resolvable, demonstrating sub-wavelength resolution having approximately one-sixtieth (0.017) the period of the imaging wavelength. This interactive tutorial explores the Ash and Nicholls experiment.

The tutorial illustrates a near-field scanning experiment utilizing a microwave resonator source, and initializes in the Auto Scan mode, with a metal-on-glass specimen being scanned beneath an illuminating aperture in an opaque metal screen. Both the Reflected Signal (detector located above the metal screen) and the Transmitted Signal (detector located below the specimen) are displayed on their respective monitors. In this example, the displayed signals are simply the inverse of one another, but in an actual experiment the signals could be vastly different from one another depending upon the material properties of the specimen (in effect, the reflectivity coefficient of the metal and transmissivity of the glass at the specific radiation wavelength).

Selecting the Manual Scan radio button will enable the Specimen Movement slider. The mouse cursor can then be used to position the specimen manually in the illuminating beam. Note that the signals displayed on the upper and lower monitors will correspond to the beam's interaction with the specimen. The metal grid bars reflect the microwave radiation and produce a maximum signal on the Reflected Signal monitor. Conversely, glass areas between the metal bars transmit the illuminating beam, resulting in the maximum Transmitted Signal. In practice, the optimal position of the detector could be above the specimen, below it, or at an oblique angle, depending upon the specific specimen and the instrument configuration. The detector that can collect the greatest signal from the specimen will have the largest signal-to-noise ratio, and thus will generate the best image with the highest contrast.

In the most fundamental form of near-field scanning imaging, radiation illuminating a specimen is confined by the dimensions of a subwavelength-diameter aperture. By scanning the aperture over the specimen at a distance less than the aperture diameter, point-by-point illumination can be achieved without the limiting effects of diffraction. Ash and Nicholl's experiment that verified the feasibility of near-field imaging utilized microwave radiation for illumination, and the specimen was moved underneath a fixed screen containing the aperture. An antenna located inside the open resonator collected the reflected signal. In order to differentiate between the microwaves that were reflected by the metal grating on the glass (specimen signal) and waves reflected by the opaque metal screen, the glass and metal specimen was oscillated at a specific frequency and only the signal that exhibited this oscillation frequency was passed by the detector to form the image.

Contributing Authors

Jeremy R. Cummings, Matthew J. Parry-Hill, Thomas J. Fellers, and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO NEARFIELD SCANNING OPTICAL MICROSCOPY

Questions or comments? Send us an email.
© 1998-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Tuesday, Sep 11, 2018 at 10:15 AM
Access Count Since January 6, 2003: 17875
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: