Visit the
Molecular Expressions Website

Galleria
Photo Gallery
Silicon Zoo
Chip Shots
Screen Savers
Museum
Web Resources
Primer
Java Microscopy
Win Wallpaper
Mac Wallpaper
Publications
Custom Photos
Image Use
Contact Us
Search
Home

Christiaan Huygens
(1629-1695)

Christiaan Huygens was a brilliant Dutch mathematician, physicist, and astronomer who lived during the seventeenth century, a period sometimes referred to as the Scientific Revolution. Huygens, a highly gifted theoretical and experimental scientist, is best known for his work on the theories of centrifugal force, the wave theory of light, and the pendulum clock.

At an early age, Huygens began work in advanced mathematics by attempting to disprove several theories established by the ancient Greeks in simple geometry. He was also very interested in astronomy and telescopes and spent a considerable amount of time devising methods to improve both the optical and mechanical performance of the telescope. His achievements in astronomy were reported in his 1659 book entitled Systema Saturnium, in which he noted his discovery of the rings encircling the planet Saturn as well as his observations about the moon, the planets, and the Orion nebula.

Huygens' keen interest in astronomy probably led to his efforts in the measurement of time and other matters relating to mechanical physics. He was heavily involved in a seventeenth century controversy with Vincenzo Viviani as to the exact inventor of the pendulum clock, which he presented as an accomplishment of Dutch Science in his 1673 book Horologium Oscillatorium. This work may well have been one of Huygens' finest efforts, because he also suggested important principles of gravity in a vacuum, and many aspects of classical physics including centrifugal force.

During the middle seventeenth century, Huygens wrote a small treatise on the calculus of probabilities based on the theories of Pascal and Fermat and spent several years in England. His reputation as a scholar and scientist were becoming world renowned at this point and he was offered a pension by French King Louis XIV to relocate to Paris. In France, Huygens' work on timepieces progressed to the point of the inclusion of a balance spring to increase reliability and accuracy. The first watch using this principle was finished in 1675, whereupon it was promptly presented to his sponsor, King Louis XIV.

In 1681, Huygens returned to Holland where he began to construct optical lenses with extremely large focal lengths, which were eventually presented to the Royal Society of London, where they remain today. Continuing along this line of work, Huygens perfected his skills in lens grinding and subsequently invented the achromatic eyepiece that bears his name and is still in widespread use today.

Huygens left Holland in 1689, and ventured to London where he became acquainted with Sir Isaac Newton and began to study Newton's theories on classical physics. Although it seems Huygens was duly impressed with Newton's work, he was still very skeptical about any theory that did not explain gravitation by mechanical means.

In 1690 Huygens returned to Holland where he published a book started in 1687 on the physics of light entitled Traité de la Lumière, in which he suggested a theory to explain the wave-like nature of light. Huygens was unconvinced by the particle theory of light advanced by Newton, primarily because he thought the rapid speed of light would only be possible if light were composed of waves. He suggested that light waves traveled on an invisible "ether" that filled the void throughout air and space. In his famous "Huygens' Principle", he suggested that each point in a light wave could be explained by miniature wavelets that combined to form a wavefront. Huygens' theories neatly explained the laws of refraction, diffraction, interference, and reflection and he went on to make major advances in the theories concerning the phenomena of double refraction (birefringence) and polarization of light.

Huygens' work in the fields of mathematics and physics led to significant steps forward in the advancement of science, particularly the fields of optics, astronomy, and mechanical physics.

Reflection and Refraction with Huygens Wavelets - Near the beginning of the eighteenth century, Dutch physicist Christiaan Huygens proposed that each point in a wave of light can be thought of as an individual source of illumination that produces its own spherical wavelets, which all add together to form an advancing wavefront. This interactive Java tutorial is designed to illustrate the reflection and refraction of light according to the multiple wavelet concept, now known as the Huygens' principle.

BACK TO PIONEERS IN OPTICS

Questions or comments? Send us an email.
© 1995-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, software, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last Modification Friday, Nov 13, 2015 at 01:19 PM
Access Count Since December 24, 1999: 100058
Visit the websites of our partners in education: