Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

Cross-Correlation

Fourier-space processing has been shown above to offer a powerful way to remove periodic noise from images. It is also used to perform convolutions, such as Gaussian smoothing or high-pass sharpening filters, more efficiently than can be done with large kernels applied directly to the pixel values. Deconvolution in which out-of-focus images are restored was also shown above.

Another very useful Fourier-space technique is cross-correlation. This requires two images, one of a scene containing objects of interest that may be difficult to locate or count because of their appearance or because of a complex surroundings, including camouflage. The second image contains just a single object of the type being sought. Fourier transforms of the two images are multiplied together with a phase shift and the result re-transformed to the pixel domain, to produce bright spots where the objects were located. The top hat filter, introduced above, may then be used to locate the spots.

In the Cross Correlation interactive tutorial, although human recognition of the various letters is easy, counting each one is difficult because of the irregular layout. Using each letter as a target, performing cross correlation, and applying a top hat filter produces a result that makes the counting process simple.

Interactive Tutorial
Cross Correlation
Discover how cross correlation can be used to locate simple targets. 

A more realistic application appears in the Applying Cross Correlation tutorial, which shows an image of bubbles, with illumination from one side that produces bright and dark regions that make automatic thresholding to detect the features difficult. Cross correlation with an image of a single bubble locates the features, even though they vary somewhat in size and texture.

Interactive Tutorial
Applying Cross Correlation
Explore the use of cross correlation to locate a complex target. 

Contributing Authors

John C. Russ - Materials Science and Engineering Dept., North Carolina State University, Raleigh, North Carolina, 27695.

Matthew Parry-Hill and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO INTRODUCTION TO DIGITAL IMAGE PROCESSING AND ANALYSIS

BACK TO MICROSCOPY PRIMER HOME

Questions or comments? Send us an email.
© 1998-2009 by Michael W. Davidson, John Russ, Olympus America Inc., and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Tuesday, Sep 11, 2018 at 02:14 PM
Access Count Since July 20, 2006: 9288
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: