Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

Darkfield Microscopy

Darkfield microscopy is a specialized illumination technique that capitalizes on oblique illumination to enhance contrast in specimens that are not imaged well under normal brightfield illumination conditions. After the zeroth order (direct) light has been blocked by an opaque stop in the substage condenser, light passing through the specimen from oblique angles at all azimuths is diffracted, refracted, and reflected into the microscope objective to form a bright image of the specimen superimposed onto a dark background.

Transmitted Darkfield Illumination - Transmitted darkfield illumination can be used to increase the visibility of specimens lacking sufficient contrast for satisfactory observation and imaging by ordinary brightfield microscopy techniques. This section discusses various aspects of darkfield illumination, including theory of the technique, condenser design for transmitted darkfield illumination (at both low and high magnifications), microscope configuration parameters, and suggestions for choosing suitable candidates for observation.

Reflected Darkfield Illumination - Darkfield illumination with reflected light enables visualization of grain boundaries, surface defects, and other features that are difficult or impossible to detect with brightfield illumination. The technique relies on an opaque occluding disk, which is placed in the path of the light traveling through the vertical illuminator so that only the peripheral rays of light reach the deflecting mirror. These rays are reflected by the mirror and pass through a hollow collar surrounding the objective to illuminate the specimen at highly oblique angles.

Darkfield Illumination for Stereomicroscopy - Darkfield observation in stereomicroscopy requires a specialized stand containing a reflection mirror and light-shielding plate to direct an inverted hollow cone of illumination towards the specimen at oblique angles. A number of aftermarket products are currently available for retrofitting stereomicroscopes with transmitted darkfield illumination. In addition, many of the microscope manufacturers offer illumination accessories that can be conveniently utilized to achieve darkfield conditions for their stereo systems. The principal elements of darkfield illumination are the same for both stereomicroscopes and more conventional compound microscopes.

Darkfield Microscope Configuration - A step-by-step guide to configuration of transmitted light microscopes for use with both low and high magnification darkfield condensers is provided in this review. Careful attention should always be given to microscope alignment and configuration, irrespective of whether the illumination mode is brightfield, darkfield, phase contrast or some other contrast enhancement technique. Time spent in this endeavor will be repaid in excellent performance of the microscope both for routine observation and critical digital imaging or photomicrography.

Troubleshooting Darkfield Microscopy - There are numerous common problems associated with darkfield microscopy and photomicrography or digital imaging. These range from insufficient illumination and condenser mis-alignment to using a field stop of incorrect size. Most darkfield illumination problems are associated with the substage condenser, and this should be the first suspect when things do not work properly. This section addresses some of the more common problems encountered with darkfield microscopy, along with suggested remedies.

Darkfield Photomicrograph Gallery - The Molecular Expressions gallery of darkfield illumination photomicrography and digital imaging contains a wide spectrum of images captured under a variety of conditions and utilizing many different specimens. Included in this unique gallery are specimens ranging from simple diatoms to fossilized dinosaur bones, insects, Moon rocks, and integrated circuits.

Darkfield Microscopy Interactive Tutorials - Explore various aspects of darkfield microscopy theory and practice using these tutorials, which are designed to complement text pages by enabling visitors to use a web browser to simulate configuration and operation of a microscope under darkfield illumination. Both the theory and practice of darkfield microscopy are addressed by the tutorials.

Contributing Authors

Mortimer Abramowitz - Olympus America, Inc., Two Corporate Center Drive., Melville, New York, 11747.

Kirill I. Tchourioukanov and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO SPECIALIZED TECHNIQUES

Questions or comments? Send us an email.
© 1998-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Thursday, Feb 25, 2016 at 03:49 PM
Access Count Since June 6, 1998: 153143
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: