Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

Interactive Tutorials

Convex Spherical Mirrors (3-D Version)

Regardless of the position of the object reflected by a convex mirror, the image formed is always virtual, upright, and reduced in size. This interactive tutorial explores how moving the object farther away from the mirror's surface affects the size of the virtual image formed behind the mirror.

The tutorial initializes with the object (an owl) positioned with its feet in the center of the mirror's optical axis and on the front side of the mirror, far away from the center of curvature and the focal point (located behind the mirror). To operate the tutorial, use the Object Position slider to translate the owl back and forth in front of the mirror. As the owl approaches the mirror, the upright, real image grows larger, approaching the size of the owl, but becomes much smaller as the owl is moved farther away from the reflecting surface of the mirror.

The convex mirror has a reflecting surface that curves outward resembling a portion of the exterior of a sphere. Light rays parallel to the optical axis are reflected from the surface in a manner that diverges from the focal point, which is behind the mirror. Images formed with convex mirrors are always right side up and reduced in size. These images are also termed virtual images, because they occur where reflected rays appear to diverge from a focal point behind the mirror.

Convex mirrors are often used in automobile right-hand rear-view applications where the outward mirror curvature produces a smaller, more panoramic view of events occurring behind the vehicle. When parallel rays strike the surface of a convex mirror, they are reflected outward so that they diverge. When the brain retraces the rays they appear to come from behind the mirror where they would converge, producing a smaller upright image (the image is upright since the virtual image is formed before the rays have crossed the focal point). Convex mirrors are also used as wide-angle mirrors in hallways and businesses for security and safety. The most amusing applications for curved mirrors are the novelty mirrors found in state fairs, carnivals, and fun houses. These mirrors often incorporate a mixture of concave and convex surfaces, or surfaces that gently change curvature, to produce bizarre, distorted reflections when people observe themselves.

Contributing Authors

Matthew J. Parry-Hill, Thomas J. Fellers and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO LIGHT AND COLOR

BACK TO BASIC PROPERTIES OF MIRRORS

Questions or comments? Send us an email.
© 1998-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Monday, Sep 10, 2018 at 08:10 AM
Access Count Since August 14, 2002: 69147
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: