Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

Interactive Java Tutorials

Liquid Crystal Tunable Filters

Liquid crystal tunable filters (LCTFs) use electrically controlled liquid crystal elements to select a specific visible wavelength of light for transmission through the filter at the exclusion of all others. This type of filter is ideal for use with electronic imaging devices, such as charge-coupled devices (CCDs), because it offers excellent imaging quality with a simple linear optical pathway.

A typical wavelength-selective liquid crystal tunable filter is constructed from a stacked of fixed filters consisting of interwoven birefringent crystal/liquid-crystal combinations and linear polarizers. The spectral region passed by LCTFs is dependent upon the choice of polarizers, optical coatings, and the liquid crystal characteristics (nematic, cholesteric, smectic, etc.). In general, visible-wavelength devices of this type usually perform quite well in the 400 to 700 nanometer region.

The LCTF utilized in this interactive tutorial is a simplified example of a Lyot filter, in which four polarizers are separated by three layers of liquid crystals sandwiched between birefringent crystals. Retardation in birefringent crystals is dependent upon crystal thickness (d) and the refractive index difference between the ordinary (n(o)) and extraordinary (n(e)) light rays produced at the wavelength of incident illumination:

R = d(n(e) - n(o))

where R is the retardation expressed in nanometers. The propagation speed of the extraordinary and ordinary ray differ, and they emerge from the anisotropic stack with a phase delay that is dependent upon the wavelength of light (l) entering the stack:

G = 2pR/l

Transmission of light through the crystal (T) is dependent upon the value of G, and is given by the following equation:

T = 1/2 cos2(G/2)

Crystals in a typical Lyot filter are often selected for a binary sequence of retardation so that transmission is maximum at the wavelength determined by the thickest crystal retarder. Other stages in the filter serve to block the transmission of unwanted wavelengths. In the tutorial, retardation values were chosen in binary steps of R, 2R, and 4R, with each stage producing a series of transmission bands that can be observed by toggling through the Stage radio buttons. The absolute retardation value and subsequent wavelength(s) passed through the LCTF can be adjusted with the Retardation slider.

Individual transmission bands from each stage in the filter are illustrated in the upper graph on the left-hand side of the tutorial window. As the Stages are toggled into action utilizing the radio buttons, the additional wavelengths are presented in this graph. The combined transmission spectrum from all stages is presented in the lower graph where normalized transmission through the filter is plotted as a function of wavelength. In practice, a Lyot LCTF may have as many as 11 polarizers and 10 liquid crystalline layers and can even be equipped with an internal microprocessor to tune all of the stages.

Contributing Authors

Kenneth R. Spring - Scientific Consultant, Lusby, Maryland, 20657.

Matthew J. Parry-Hill and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO LIGHT FILTERS

Questions or comments? Send us an email.
© 1998-2022 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Thursday, Jun 14, 2018 at 04:46 PM
Access Count Since November 21, 2000: 34190
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: