Microscopy Primer
Light and Color
Microscope Basics
Special Techniques
Digital Imaging
Confocal Microscopy
Live-Cell Imaging
Photomicrography
Microscopy Museum
Virtual Microscopy
Fluorescence
Web Resources
License Info
Image Use
Custom Photos
Partners
Site Info
Contact Us
Publications
Home

The Galleries:

Photo Gallery
Silicon Zoo
Pharmaceuticals
Chip Shots
Phytochemicals
DNA Gallery
Microscapes
Vitamins
Amino Acids
Birthstones
Religion Collection
Pesticides
BeerShots
Cocktail Collection
Screen Savers
Win Wallpaper
Mac Wallpaper
Movie Gallery

NSOM Interactive Java Tutorials

Mechanical Oscillator

When monitored by an oscillatory feedback method, the NSOM probe is typically driven at its resonance frequency. A probe's frequency response is dependent upon the values of the spring constant, mass, and damping coefficient. The mechanical system examined in this tutorial represents the interaction of these parameters for both the tuning fork oscillator and the bent optical probe NSOM configurations. In practice, the probe is driven through a range of frequencies to generate a frequency spectrum such as that created interactively in the tutorial. The feedback resonance frequency is then set to a value corresponding to the peak in the probe frequency response curve.

Interactive Java Tutorial
ATTENTION
Our servers have detected that your web browser does not have the Java Virtual Machine installed or it is not functioning properly. Please install this software in order to view our interactive Java tutorials. You may download the necessary software by clicking on the "Get It Now" button below.

 

To operate the tutorial, use the mouse cursor to adjust the three sliders. As the values of Spring Constant, Mass, and Damping Coefficient are changed, they are displayed in the windows above the sliders. The graph window displays the corresponding frequency response curve for an oscillating probe having the properties selected by the sliders. The computed Q value as well as the Frequency at Maximum Magnitude are also displayed near the center of the tutorial window.

The equation describing the amplitude of the mass oscillator as a function of frequency (Hz) is given by:

A = Fo/(M2(4p2f2 - (k/M)1/2)2 + 4b2p2f2)1/2

Where F(0) is the driving amplitude, M is the mass of the oscillator, f is the frequency of oscillation in hertz, k is the spring constant of the material, and b is the damping coefficient. Each of these parameters may be varied in the applet to illustrate the resulting change in resonance and the change in Q.

The parameter Q, also termed the quality factor or Q-factor, in this context, is a measure of quality of the oscillator. The quality factor is defined as the oscillator's resonance frequency divided by its resonance width. It is generally beneficial to maximize the Q of the probe oscillation to achieve sensitive tip height regulation. The lower the Q of the oscillating probe, the lower the signal-to-noise ratio, which in turn results in less representative topographic information being obtained from the oscillatory feedback mechanism. For the mechanical system represented in the tutorial, the equation for the quality factor of the system is

Q=(k/M)1/2 • M/b

The larger the Q, the greater the sensitivity of the feedback signal. If the spring constant, mass, and damping coefficient are not known, then the Q can be calculated by dividing the frequency of the maximum amplitude by the width of the peak. As evident from examining the equation above, the term that has the greatest impact on the Q is the damping coefficient, b, with greater damping in the mechanical system resulting in lower Q. A lower Q results in a mechanical oscillator with less sensitivity to a disturbance in the system, such as that resulting from the interaction of an oscillating probe with a specimen.

Contributing Authors

Jeremy R. Cummings, Matthew J. Parry-Hill, Thomas J. Fellers, and Michael W. Davidson - National High Magnetic Field Laboratory, 1800 East Paul Dirac Dr., The Florida State University, Tallahassee, Florida, 32310.


BACK TO NEARFIELD SCANNING OPTICAL MICROSCOPY

Questions or comments? Send us an email.
© 1998-2013 by Michael W. Davidson and The Florida State University. All Rights Reserved. No images, graphics, scripts, or applets may be reproduced or used in any manner without permission from the copyright holders. Use of this website means you agree to all of the Legal Terms and Conditions set forth by the owners.
This website is maintained by our
Graphics & Web Programming Team
in collaboration with Optical Microscopy at the
National High Magnetic Field Laboratory.
Last modification: Wednesday, Mar 26, 2014 at 02:23 PM
Access Count Since January 6, 2003: 13778
For more information on microscope manufacturers,
use the buttons below to navigate to their websites: